Wake up and retention in zinc magnesium oxide ferroelectric films

Author:

Jacques Leonard1ORCID,Ryu Gyunghyun2,Goodling Devin2,Bachu Saiphaneendra2,Taheri Rojin2,Yousefian Pedram2ORCID,Shetty Smitha2,Akkopru-Akgun Betul2ORCID,Randall Clive2ORCID,Alem Nasim2,Maria Jon-Paul2,Trolier-McKinstry Susan2ORCID

Affiliation:

1. Department of Engineering Science and Mechanics, The Pennsylvania State University 1 , N-246 Millennium Science Complex, University Park, Pennsylvania 16802, USA

2. Materials Science and Engineering Department and Materials Research Institute, The Pennsylvania State University 2 , Millennium Science Complex, University Park, Pennsylvania 16802, USA

Abstract

Zn0.64Mg0.36O (ZMO) is a newly discovered ferroelectric oxide with the wurtzite structure. Epitaxial Zn0.64Mg0.36O films from 0.036 to 0.5 μm in thickness are grown on Pt/sapphire with the crystallographic c-axis out of plane. At room temperature, the remanent polarization is ∼80 μC/cm2 and the coercive field is ∼3 MV/cm. The coercive field is strongly temperature dependent up to 240 °C with a pseudo-activation energy of 23 ± 0.3 meV, suggesting that polarization reversal occurs through an extrinsic process such as domain wall motion. ZMO films can be woken up in 20 electric field cycles on driving near the coercive field; they wake up in a single loop at fields in excess of 4 MV/cm. A thermally activated fluid imprint process, with a pseudo-activation energy of 67 ± 8 meV, enlarges the coercive field by several hundred kV cm−1 after switching the polarization. Additionally, ZMO films exhibit excellent retention characteristics; no reduction in the polarization is observed up to 1000 h from room temperature to 200 °C bakes. This current early generation of ZMO films can survive several thousand switching cycles before dielectric breakdown occurs.

Funder

Energy Frontier Research Centers

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference36 articles.

1. On Global Electricity Usage of Communication Technology: Trends to 2030

2. L. B. Desroches , H.Fuchs, J.Greenblatt, S.Pratt, H.Willem, E.Claybaugh, B.Beraki, M.Nagaraju, S.Price, and S.Young, Report No. 6876E, Lawrence Berkeley Nat. Lab (2014).

3. A. Ramanathan , doctoral dissertation, Pennsylvania State University, 2022.

4. See https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/linleyspr22 for information about the trend of increasing demands on microprocessors by artificial intelligence image and language processing models.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3