Coexistence and Interplay of Two Ferroelectric Mechanisms in Zn1‐xMgxO

Author:

Yang Jonghee12,Ievlev Anton V.3,Morozovska Anna N.4,Eliseev Eugene A.45,Poplawsky Jonathan D3,Goodling Devin6,Spurling Robert Jackson6,Maria Jon‐Paul6,Kalinin Sergei V.1,Liu Yongtao3ORCID

Affiliation:

1. Department of Materials Science and Engineering University of Tennessee Knoxville TN 37996 USA

2. Department of Chemistry Yonsei University Seoul 03722 Republic of Korea

3. Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37830 USA

4. Institute of Physics National Academy of Sciences of Ukraine 46, pr. Nauky Kyiv 03028 Ukraine

5. Frantsevich Institute for Problems in Materials Science National Academy of Sciences of Ukraine Omeliana Pritsaka str., 3 Kyiv 03142 Ukraine

6. Department of Materials Science and Engineering Pennsylvania State University University Park PA 16802 USA

Abstract

AbstractFerroelectric materials promise exceptional attributes including low power dissipation, fast operational speeds, enhanced endurance, and superior retention to revolutionize information technology. However, the practical application of ferroelectric‐semiconductor memory devices has been significantly challenged by the incompatibility of traditional perovskite oxide ferroelectrics with metal‐oxide‐semiconductor technology. Recent discoveries of ferroelectricity in binary oxides such as Zn1‐xMgxO and Hf1‐xZrxO have been a focal point of research in ferroelectric information technology. This work investigates the ferroelectric properties of Zn1‐xMgxO utilizing automated band excitation piezoresponse force microscopy. This findings reveal the coexistence of two ferroelectric subsystems within Zn1‐xMgxO. A “fringing‐ridge mechanism” of polarization switching is proposed that is characterized by initial lateral expansion of nucleation without significant propagation in depth, contradicting the conventional domain growth process observed in ferroelectrics. This unique polarization dynamics in Zn1‐xMgxO suggests a new understanding of ferroelectric behavior, contributing to both the fundamental science of ferroelectrics and their application in information technology.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3