Controlling the creation/annihilation and distribution of magnetic skyrmions by manipulating an externally applied voltage

Author:

Ishikawa Ryo1ORCID,Goto Minori234ORCID,Nomura Hikaru234ORCID,Suzuki Yoshishige234

Affiliation:

1. ULVAC-Osaka University Joint Research Laboratory for Future Technology, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan

2. Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

3. Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan

4. Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

Abstract

Magnetic skyrmions are currently gaining attention owing to their potential to act as information carriers in spintronic devices. However, conventional techniques which rely on modulating the electric current to write or manipulate information using skyrmions are not energy efficient. Therefore, in this study, a Ta/Co–Fe–B/Ta/MgO junction that hosts a skyrmion was utilized to fabricate a device to investigate the effect of applying a voltage in the direction perpendicular to the film plane. Magneto-optical Kerr effect microscopy was performed in a polar configuration to observe the difference in the perpendicular magnetic anisotropy by observing the behavior of the magnetic domain structure and the skyrmions. Our findings suggest that voltage-induced magnetic domain structure modulation and the creation/annihilation of skyrmions are both possible. Furthermore, manipulation of skyrmions was realized by utilizing repulsive magnetic dipole interaction between the voltage-created skyrmion and skyrmion, exhibiting Brownian motion, outside the top electrode. Thus, our proposed method can enable controlling the creation and annihilation of skyrmions and their positions by manipulating the externally applied voltage. These findings can advance unconventional computing fields, such as stochastic and ultra-low-power computing.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3