Advancing fluid dynamics simulations: A comprehensive approach to optimizing physics-informed neural networks

Author:

Zhou Wen1ORCID,Miwa ShuichiroORCID,Okamoto KojiORCID

Affiliation:

1. Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan

Abstract

Flow modeling based on physics-informed neural networks (PINNs) is emerging as a potential artificial intelligence (AI) technique for solving fluid dynamics problems. However, conventional PINNs encounter inherent limitations when simulating incompressible fluids, such as difficulties in selecting the sampling points, balancing the loss items, and optimizing the hyperparameters. These limitations often lead to non-convergence of PINNs. To overcome these issues, an improved and generic PINN for fluid dynamic analysis is proposed. This approach incorporates three key improvements: residual-based adaptive sampling, which automatically samples points in areas with larger residuals; adaptive loss weights, which balance the loss terms effectively; and utilization of the differential evolution optimization algorithm. Then, three case studies at low Reynolds number, Kovasznay flow, vortex shedding past a cylinder, and Beltrami flow are employed to validate the improved PINNs. The contribution of each improvement to the final simulation results is investigated and quantified. The simulation results demonstrate good agreement with both analytical solutions and benchmarked computational fluid dynamics (CFD) calculation results, showcasing the efficiency and validity of the improved PINNs. These PINNs have the potential to reduce the reliance on CFD simulations for solving fluid dynamics problems.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3