Self-adaptive and time divide-and-conquer physics-informed neural networks for two-phase flow simulations using interface tracking methods

Author:

Zhou WenORCID,Miwa ShuichiroORCID,Okamoto KojiORCID

Abstract

Physics-informed neural networks (PINNs) are emerging as a promising artificial intelligence approach for solving complex two-phase flow simulations. A critical challenge in these simulations is an accurate representation of the gas–liquid interface using interface tracking methods. While numerous studies in conventional computational fluid dynamics (CFD) have addressed this issue, there remains a notable absence of research within the context of PINNs-based two-phase flow simulations. Therefore, this study aims to develop a robust and generic PINNs for two-phase flow by incorporating the governing equations with three advanced interface tracking methods—specifically, the Volume of Fluid, Level Set, and Phase-Field method—into an improved PINN framework that has been previously proposed and validated. To further enhance the performance of the PINNs in simulating two-phase flow, the phase field constraints, residual connection and the time divide-and-conquer strategies are employed for restricting neural network training within the scope of physical laws. This self-adaptive and time divide-and-conquer (AT) PINNs is then optimized by minimizing both the residual and loss terms of partial differential equation. By incorporating the three different interface tracking methods, it efficiently handles high-order derivative terms and captures the phase interface. The case of single rising bubble in two-phase flow is simulated to validate the robustness and accuracy of the AT PINNs. The simulation's accuracy is evaluated by comparing its performance in terms of velocity, pressure, phase field, center of mass, and rising velocity with that of conventional PINNs and CFD benchmarks. The results indicate that the AT PINNs coupled with these interface tracking methods offers a satisfactory performance in simulating rising bubble phenomenon.

Funder

KAKEN

Wen Zhou appreciates the financial support from the Chinese Scholarship Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3