Flow field reconstruction from sparse sensor measurements with physics-informed neural networks

Author:

Hosseini Mohammad Yasin1,Shiri Yousef1ORCID

Affiliation:

1. Shahrood University of Technology, Faculty of Mining, Petroleum and Geophysics Engineering , Shahrood, Iran

Abstract

In the realm of experimental fluid mechanics, accurately reconstructing high-resolution flow fields is notably challenging due to often sparse and incomplete data across time and space domains. This is exacerbated by the limitations of current experimental tools and methods, which leave critical areas without measurable data. This research suggests a feasible solution to this problem by employing an inverse physics-informed neural network (PINN) to merge available sparse data with physical laws. The method's efficacy is demonstrated using flow around a cylinder as a case study, with three distinct training sets. One was the sparse velocity data from a domain, and the other two datasets were limited velocity data obtained from the domain boundaries and sensors around the cylinder wall. The coefficient of determination (R2) coefficient and mean squared error (RMSE) metrics, indicative of model performance, have been determined for the velocity components of all models. For the 28 sensors model, the R2 value stands at 0.996 with an associated RMSE of 0.0251 for the u component, while for the v component, the R2 value registers at 0.969, accompanied by an RMSE of 0.0169. The outcomes indicate that the method can successfully recreate the actual velocity field with considerable precision with more than 28 sensors around the cylinder, highlighting PINN's potential as an effective data assimilation technique for experimental fluid mechanics.

Publisher

AIP Publishing

Reference56 articles.

1. Mapping Saturn using deep learning;Nat. Astron.,2019

2. Application of adaptive neuro-fuzzy inference system for prediction of porosity from seismic attributes; case study, Farour. A oil field, Persian Gulf, Iran;J. Seismic Explor.,2011

3. Integration of 2D seismic and well log data for petrophysical modeling and gas reserve estimation in appraisal state of petroleum exploration;J. Seismic Explor.,2012

4. Deep learning for multi-year ENSO forecasts;Nature,2019

5. Teaching solid mechanics to artificial intelligence—A fast solver for heterogeneous materials;npj Comput. Mater.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3