Non-volatile resistive switching behavior and time series analysis of Ag/PVA-graphene oxide/Ag device

Author:

Yadav Mahesh Kumar1ORCID,Kundale Somnath S.2,Sutar Santosh S.3ORCID,Dongale Tukaram D.4ORCID,Kumar Pradip4,Panwar Neeraj1ORCID

Affiliation:

1. Department of Physics, Central University of Rajasthan 1 , Bandersindri, Ajmer 305817, Rajasthan, India

2. Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University 2 , Kolhapur 416004, India

3. Yashwantrao Chavan School of Rural Development, Shivaji University 3 , Kolhapur 416004, India

4. Green Engineered Materials and Additive Manufacturing Division, CSIR-Advanced Materials and Processes Research Institute 4 , Habibganj Naka, Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India

Abstract

Non-volatile memory devices have been getting significant attention from researchers worldwide in recent years due to their application in resistive random access memory and neuromorphic computing. Here, we have fabricated polyvinyl alcohol-graphene oxide (PVA-GO) composite as an active material for the resistive switching with different concentrations of GO (0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 wt. % GO solution) dispersed in 5 wt. % PVA matrix in a 2:1 volume ratio. We demonstrate the non-volatile forming free resistive switching properties of Ag/PVA-GO/Ag devices. Structural properties of PVA-GO composites are established from the x-ray diffraction pattern, which indicates the complete dispersion of GO inside the PVA matrix. The Ag/PVA-GO-0.1 wt. %/Ag device shows better bipolar resistive switching at VSET ∼ 0.4 V and VRESET at ∼−0.8 V. This device indicates well-resolved two distinct states at a read voltage of 0.1 V in endurance and retention measurements. The fabricated device switches successfully tested for 2.5 × 103 cycles and retains its state for 3.36 × 103 s without any observable degradation. Furthermore, the non-volatile retention property was modeled using time series analysis. For this, Holt–Winter's exponential smoothing technique was utilized. Additionally, the charge–flux linkage characteristic shows the double-valued function, and time domain–charge and time domain–flux show asymmetric behaviors. The electrical conduction mechanism exhibits ohmic behavior in the entire region of the low resistance state and the lower voltage region of the high resistance state. In the high-voltage region of the high resistance state, the space charge-limited conduction mechanism is observed. The resistive switching behavior is explained with the help of an appropriate model.

Funder

Council of Scientific and Industrial Research, India

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3