Effects of mass ratio and rotation speed on flow induced vibration of a rotating cylinder with two degrees of freedom

Author:

Amini Yasser1ORCID,Zahed Iman1ORCID,Mahini Mikaeil1ORCID,Izadpanah Ehsan1ORCID

Affiliation:

1. Department of Mechanical Engineering, Persian Gulf University , Bushehr 75169, Iran

Abstract

Rotating cylinders submerged in the fluid have many practical applications such as offshore wind turbines and drilling pipes. These rotating cylinders are usually subjected to vortex-induced vibrations, and heat transfer has a great effect on their efficiency. Therefore, it is very important to investigate the heat transfer from the rotating cylinder undergoing vortex-induced vibrations. The present study investigates the flow-induced vibration (FIV) of a rotating circular cylinder, along with the related convective heat transfer, for various mass ratios (mr), rotating rates (α), and a range of reduced velocity (3.0 ≤ ur ≤ 15). The cylinder is modeled as a two-degree-of-freedom system, whereby it is free to oscillate both in the streamwise and transverse directions. The results indicate that the rotational motion of the cylinder significantly enhances the cylinder's displacements in both directions. Furthermore, the displacement amplitude in both directions decreases with an increase in mr. For higher reduced velocities, the displacement amplitude becomes constant. Also, it is observed that increasing mr leads to an improvement in heat transfer for high reduced velocities. Also, the maximum value of the Nusselt number is 15.25 for the non-rotating cylinder and 14 for the rotating cylinder with α=1. The FIV of a rotating circular cylinder exhibits several vortex patterns, including 2S, 2P, P + S, and 2T.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3