Isotropic atomic layer etching of GaN using SF6 plasma and Al(CH3)3

Author:

Chittock Nicholas J.1ORCID,Shu Yi2,Elliott Simon D.3ORCID,Knoops Harm C. M.12ORCID,Kessels W. M. M. (Erwin).1ORCID,Mackus Adriaan J. M.1ORCID

Affiliation:

1. Department of Applied Physics, Eindhoven University of Technology 1 , P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2. Oxford Instruments Plasma Technology 2 , North End, Bristol BS49 4AP, United Kingdom

3. Schrödinger Inc. 3 , 1540 Broadway, New York, New York 10036, USA

Abstract

GaN is an enabling material for light emitting diodes, advanced radio frequency, and power semiconductor devices. However, fabrication of GaN devices often relies on harsh etch processes, which can leave an etch damage layer, limiting final device performance. In this work, an isotropic atomic layer etching (ALE) process involving SF6 plasma and trimethylaluminium [Al(CH3)3] is presented for the controlled etching of GaN, which reduces oxygen and carbon contamination while smoothing the surface. The ALE chemistry was first examined with density functional theory. A comparison between proposed thermal and plasma-driven reactions is made by implementing Natarajan–Elliott analysis, highlighting that the plasma process is a good candidate for GaN ALE. Saturation was experimentally confirmed for both ALE half-cycles at 150 and 300 °C, with etch rates of 0.31 ± 0.01 and 0.40 ± 0.02 nm/cycle, respectively. Analysis of the films post-ALE shows that the RMS roughness of the films decreases from 2.6 ± 0.1 to 1.9 ± 0.1 nm after 25 nm of etching at 300 °C, in agreement with a previously developed curvature-dependent smoothing model. Taken together, this ALE process enables accurate GaN thickness tuning, surface cleaning, and surface smoothing, allowing for further development of GaN devices.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3