An experimental and computational view of the photoionization of diol–water clusters

Author:

Wannenmacher Anna12ORCID,Lu Wenchao1ORCID,Amarasinghe Chandika1ORCID,Cerasoli Frank2ORCID,Donadio Davide2ORCID,Ahmed Musahid1ORCID

Affiliation:

1. Chemical Sciences Division, Lawrence Berkeley National Laboratory 1 , Berkeley, California 94720, USA

2. Department of Chemistry, University of California 2 , Davis, California 95616, USA

Abstract

In the interstellar medium, diols and other prebiotic molecules adsorb onto icy mantles surrounding dust grains. Water in the ice may affect the reactivity and photoionization of these diols. Ethylene glycol (EG), 1,2-propylene glycol, and 1,3-propylene glycol clusters with water clusters were used as a proxy to study these interactions. The diol–water clusters were generated in a continuous supersonic molecular beam, photoionized by synchrotron-based vacuum ultraviolet light from the Advanced Light Source, and subsequently detected by reflectron time-of-flight mass spectrometry. The appearance energies for the detected clusters were determined from the mass spectra, collected at increasing photon energy. Clusters of both diol fragments and unfragmented diols with water were detected. The lowest energy geometry optimized conformers for the observed EG–water clusters and EG fragment–water clusters have been visualized using density functional theory (DFT), providing insight into hydrogen bonding networks and how these affect fragmentation and appearance energy. As the number of water molecules clustered around EG fragments (m/z 31 and 32) increased, the appearance energy for the cluster decreased, indicating a stabilization by water. This trend was supported by DFT calculations. Fragment clusters from 1,2-propylene glycol exhibited a similar trend, but with a smaller energy decrease, and no trend was observed from 1,3-propylene glycol. We discuss and suggest that the reactivity and photoionization of diols in the presence of water depend on the size of the diol, the location of the hydroxyl group, and the number of waters clustered around the diol.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3