Abstract
Abstract
The optimization of electrochemical energy storage devices (EES) for low-temperature conditions is crucial in light of the growing demand for convenient living in such environments. Sluggish ion transport or the freezing of electrolytes at the electrode-electrolyte interface are the primary factors that limit the performance of EES under low temperatures, leading to fading of capacity and instability in device performance. This review provides a comprehensive overview of antifreeze strategies for various electrolytes (including aqueous electrolytes, organic electrolytes, and ionic liquids), and optimization methods for ion transport at the electrolyte-electrode. Additionally, the main challenges and forward-looking views are highlighted on the design and development of low-temperature electrolytes and EES devices.
Funder
Program for HUST Academic Frontier Youth Team. M.C.
China Postdoctoral Science Foundation
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献