A modified extreme event-based synchronicity measure for climate time series

Author:

Gao Meng1ORCID,Zhao Ying1ORCID,Wang Zhen1ORCID,Wang Yueqi2ORCID

Affiliation:

1. School of Mathematics and Information Sciences, Yantai University 1 , Yantai 264005, China

2. Key Laboratory of Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences 2 , Yantai 264003, China

Abstract

Extreme event-based synchronicity is a specific measure of similarity of extreme event-like time series. It is capable to capture the nonlinear interactions between climatic extreme events. In this study, we proposed a modified extreme event-based synchronicity measure that incorporates two types of extreme events (positive and negative) simultaneously in climate anomalies to characterize the synchronization and time delays. Statistical significance of the modified extreme event synchronization measure is tested by Monte-Carlo simulations. The applications of the modified extreme event-based synchronicity measure on synthetic time series verified that it was superior to the traditional event synchronicity measure. Both synchronous and antisynchronous features between climate time series could be captured by the modified measure. It is potentially applied in investigating the interrelationship between climate extremes and climate index or constructing complex networks of climate variables. In addition, this modified extreme event-based synchronicity measure could be easily applied to other types of time series just by identifying the extreme events properly.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mapping time series into signed networks via horizontal visibility graph;Physica A: Statistical Mechanics and its Applications;2024-01

2. Complex climate networks of nonlinearly correlated time series;Chaos, Solitons & Fractals;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3