Motion states identification of underwater glider based on complex networks and graph convolutional networks

Author:

Guo Wei1ORCID,Sun Xinlin1ORCID,Lv Dongmei1,Ma Wei2,Niu Wendong2ORCID,Gao Zhongke1ORCID,Wang Yanhui2

Affiliation:

1. School of Electrical and Information Engineering, Tianjin University 1 , Tianjin 300072, China

2. School of Mechanical Engineering, Tianjin University 2 , Tianjin, 300350, China

Abstract

Underwater glider (UG) plays an important role in ocean observation and exploration for a more efficient and deeper understanding of complex ocean environment. Timely identifying the motion states of UG is conducive for timely attitude adjustment and detection of potential anomalies, thereby improving the working reliability of UG. Combining limited penetrable visibility graph (LPVG) and graph convolutional networks (GCN) with self-attention mechanisms, we propose a novel method for motion states identification of UG, which is called as visibility graph and self-attention mechanism-based graph convolutional network (VGSA-GCN). Based on the actual sea trial data of UG, we chose the attitude angle signals of motion states related sensors collected by the control system of UG as the research object and constructed complex networks based on the LPVG method from pitch angle, roll angle, and heading angle data in diving and climbing states. Then, we build a self-attention mechanism-based GCN framework and classify the graphs under different motion states constructed by a complex network. Compared with support vector machines, convolutional neural network, and GCN without self-attention pooling layer, the proposed VGSA-GCN method can more accurately distinguish the diving and climbing states of UG. Subsequently, we analyze the variation of the transitivity coefficient corresponding to these two motion states. The results suggest that the coordination of the various sensors in the attitude adjustment unit during diving becomes closer and more efficient, which corresponds to the higher network measure of the diving state compared to the climbing state.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipality

National Key Research and Development Program of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SAMSGL: Series-aligned multi-scale graph learning for spatiotemporal forecasting;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3