Quantile Regression–Based Spatiotemporal Analysis of Extreme Temperature Change in China

Author:

Gao Meng1ORCID,Franzke Christian L. E.2

Affiliation:

1. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China

2. Meteorological Institute, and Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany

Abstract

In this study, temporal trends and spatial patterns of extreme temperature change are investigated at 352 meteorological stations in China over the period 1956–2013. The temperature series are first examined for evidence of long-range dependence at daily and monthly time scales. At most stations there is evidence of significant long-range dependence. Noncrossing quantile regression has been used for trend analysis of temperature series. For low quantiles of daily mean temperature and monthly minimum value of daily minimum temperature (TNn) in January, there is an increasing trend at most stations. A decrease is also observed in a zone ranging from northeastern China to central China for higher quantiles of daily mean temperature and monthly maximum value of daily maximum temperature (TXx) in July. Changes of the large-scale atmospheric circulation partly explain the trends of temperature extremes. To reveal the spatial pattern of temperature changes, a density-based spatial clustering algorithm is used to cluster the quantile trends of daily temperature series for 19 quantile levels (0.05, 0.1, …, 0.95). Spatial cluster analysis identifies a few large clusters showing different warming patterns in different parts of China. Finally, quantile regression reveals the connections between temperature extremes and two large-scale climate patterns: El Niño–Southern Oscillation (ENSO) and the Arctic Oscillation (AO). The influence of ENSO on cold extremes is significant at most stations, but its influence on warm extremes is only weakly significant. The AO not only affects the cold extremes in northern and eastern China, but also affects warm extremes in northeastern and southern China.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

German Research Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference87 articles.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3