Optoelectronic and structural characterization of trapezoidal defects in 4H-SiC epilayers and the effect on MOSFET reliability

Author:

El Hageali Sami A.12ORCID,Guthrey Harvey2ORCID,Johnston Steven2ORCID,Norman Andrew2ORCID,Soto Jake3ORCID,Odekirk Bruce3ORCID,Stahlbush Robert E.4ORCID,Mahadik Nadeemullah A.4ORCID,Gorman Brian P.1ORCID,Al-Jassim Mowafak2

Affiliation:

1. Colorado School of Mines 1 , 1500 Illinois Street, Golden, Colorado 80401, USA

2. National Renewable Energy Laboratory 2 , 15013 Denver West Parkway, Golden, Colorado 80401, USA

3. Microchip Technology Inc. 3 , 405 SW Columbia Street, Bend, Oregon 97702, USA

4. Naval Research Laboratory 4 , 4555 Overlook Ave SW, Washington, DC 20375, USA

Abstract

To this day, trapezoidal defects are found in clusters and high counts in wafers representing the industry standard in terms of material quality being produced. This study sheds light on the nature, origin, behavior, and impact of this defect on device yield and reliability. Trapezoidal defects in 4H-SiC epitaxial layers were investigated by photoluminescence (PL) imaging, scanning electron microscopy (SEM), cathodoluminescence spectrum imaging (CLSI), SEM electron beam induced current (EBIC) imaging, and by transmission electron microscopy (TEM) observation. The bar-shaped stacking faults were identified by the PL and CL measurements with a peak emission wavelength of 420 and 450 nm. An optoelectronic behavioral study based on the recombination enhanced dislocation glide mechanism revealed how expanding dislocations and stacking faults interact with each other. Combining the luminescence and microscopy results, the nature of the stacking faults was identified as being a combination of Shockley-type and Frank-type stacking faults. The TEM analysis showed that these defects originate from the substrate and the stacking sequences of some of the faults were determined as (…2, 4, 2…) and (…2, 3, 2…) in the Zhdanov's notation by high-resolution TEM. The origin of this defect is speculated based on our results and previous reports. The EBIC imaging showed that the high density of SFs in these towers is a strong site of carrier recombination, which presumably has an impact on the transfer characteristics of SiC devices. Furthermore, these defects have shown to impact metal oxide semiconductor field effect transistors electrical performance via an increase in the on-state resistance depending on the coverage percentage of the tower of defects in the active area of the device.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3