Affiliation:
1. Department of Mechanical Engineering, M S Ramaiah Institute of Technology 1 , Bengaluru, India
2. Visvesveraya Technological University 2 , Belgavi 590018, India
3. Department of Mechanical Engineering, GM Institute of Technology 3 , Davangere, India
Abstract
The microchannel heat exchanger (MCHE) is considered the next-generation heat exchanger owing to its high-performance thermal management systems and fabrication processes. The MCHE is used in many cooling applications, such as x ray medical devices, high-power microelectronics, and high-heat flux devices. Comprehensive exploration of different nanofluids, their concentrations, and impacts on pressure drop and heat transfer within the context of MCHEs was the main focus of the current study. The experiments were conducted at Reynolds numbers ranging from 100 to 500 for laminar flow. Additionally, nanoparticles (np) such as Al2O3, CuO, and carbon nanotubes (CNT) were added to de-ionized water at weight percentages of 0.01, 0.03, and 0.05. The results indicated that heat transfer significantly increased at a particle concentration 0.05 by wt. % for all nanofluids (nf). Furthermore, at a particle of 0.05 by wt. %, the heat transfer of the CNT-based nf increased by 37%, whereas those of the Al2O3- and CuO-based nf increased by 24.01% and 6.23%, respectively. The nanofluid pressure drop (PD) increases with an increase in the Reynolds number owing to the increase in the viscosity of the liquid compared to de-ionized water (base fluid) and requires more pumping power.
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献