Study on heat transfer and pressure drop characteristics for nanofluids in microchannel heat exchangers

Author:

Lalagi Gururaj12ORCID,Nagaraj P. B.12,Talugeri Vinayak12ORCID,Bidari Mallikarjuna Veerabhadrappa23

Affiliation:

1. Department of Mechanical Engineering, M S Ramaiah Institute of Technology 1 , Bengaluru, India

2. Visvesveraya Technological University 2 , Belgavi 590018, India

3. Department of Mechanical Engineering, GM Institute of Technology 3 , Davangere, India

Abstract

The microchannel heat exchanger (MCHE) is considered the next-generation heat exchanger owing to its high-performance thermal management systems and fabrication processes. The MCHE is used in many cooling applications, such as x ray medical devices, high-power microelectronics, and high-heat flux devices. Comprehensive exploration of different nanofluids, their concentrations, and impacts on pressure drop and heat transfer within the context of MCHEs was the main focus of the current study. The experiments were conducted at Reynolds numbers ranging from 100 to 500 for laminar flow. Additionally, nanoparticles (np) such as Al2O3, CuO, and carbon nanotubes (CNT) were added to de-ionized water at weight percentages of 0.01, 0.03, and 0.05. The results indicated that heat transfer significantly increased at a particle concentration 0.05 by wt. % for all nanofluids (nf). Furthermore, at a particle of 0.05 by wt. %, the heat transfer of the CNT-based nf increased by 37%, whereas those of the Al2O3- and CuO-based nf increased by 24.01% and 6.23%, respectively. The nanofluid pressure drop (PD) increases with an increase in the Reynolds number owing to the increase in the viscosity of the liquid compared to de-ionized water (base fluid) and requires more pumping power.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3