The physical mechanism of heat transfer enhancement for Al2O3-water nanofluid forced flow in a microchannel with two-phase lattice Boltzmann method

Author:

Guo YaliORCID,Liu HuiORCID,Gong Luyuan,Shen Shengqiang

Abstract

PurposeThe purpose of this paper is to analyze the mechanism of nanofluid enhanced heat transfer in microchannels and promote the application of nanofluids in industrial processes such as solar collectors, electronic cooling and automotive batteries.Design/methodology/approachThe two-phase lattice Boltzmann method was used to calculate the flow and heat transfer characteristics of Al2O3 nanofluids in a microchannel at Re = 50. By comparing the simulation results of pure water, nanofluids without calculated nanoparticle-fluid interaction forces and nanofluids with calculated nanoparticle-fluid interaction forces, the effects of physical properties improvement and interaction forces on flow and heat transfer are quantified.FindingsThe findings show that the nanofluid (φ = 3%, R = 10 nm) increases the average Nusselt number by 22.40% at Re = 50. In particular, 16.16% of the improvement relates to nanoparticles optimizing the thermophysical parameters of the base fluid. The remaining 6.24% relates to the disturbance of the thermal boundary layer caused by the interaction between nanoparticles and the base fluid. Moreover, the nanoparticle has a negligible effect on the average Fanning friction factor. Ultimately, we conclude that the nanofluid is an excellent heat transfer working medium based on its performance evaluation criterion, PEC = 1.225.Originality/valueTo the best of the authors' knowledge, this research quantifies for the first time the contribution of nanoparticle-liquid interactions and nanofluids physical properties to enhanced heat transfer, advancing the knowledge of the nanoparticle's behavior in liquid systems.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3