Under-actuated USV path following control under multiple constraints

Author:

Wang Hongbin1ORCID,Dong Jiao23ORCID,Zhang Jianqiang1,Li Yan1,Wang Shiqi4

Affiliation:

1. Weapon Engineering College of Naval University of Engineering, Wuhan 430000, China

2. Unit 71776 of the Chinese People's Liberation Army, Beijing 100161, China

3. Key Laboratory of Complex Ship System Simulation, Beijing 100161, China

4. School of Economics, Ocean University of China, Qingdao 266100, China

Abstract

The path following control of an under-actuated unmanned surface vehicle (USV) under the constraints of rudder angle, rudder velocity, and rudder response time in the disturbing environment is studied, and a cascaded path following control system based on guidance law and heading control law is designed. First, the guidance law is designed on the basis of integral line-of-sight, while the tracking error state is introduced to design a variable gain disturbance observer, which not only ensures the stability of the convergence section but also takes into account the tracking accuracy of the stable section. The stability of the system is analyzed. Subsequently, the rudder maneuverability constraint and rudder effect delay are further imposed after fully considering the limited range of rudder angle, rudder velocity, and rudder response time in the process of path following. In addition, the heading control law is, therefore, designed on the basis of the rolling optimization strategy, which effectively reduces the oscillation while ensuring the convergence speed. The stability of the control law is further proved. Thereafter, a simulation experiment proves the effectiveness and advancement of the algorithm designed in this paper. In the end, based on the software and hardware design of the control system, “Sea Sturgeon” USV is used for the lake test of the proposed control algorithm to verify its feasibility in practical engineering applications.

Funder

Natural Science Foundation of Hubei Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3