Affiliation:
1. State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
2. School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
Abstract
GeSe is a layered p-type semiconductor with intriguing optoelectrical properties such as high absorption coefficient, high carrier mobility, and narrow bandgap, which promises a broadband photoresponse over a wide spectral range. However, GeSe based broadband photodetectors could not achieve both high responsivity and fast response speed. Therefore, it is urgent to improve the properties of GeSe based broadband photodetectors. Herein, a GeSe/MoTe2 van der Waals (vdW) heterostructure was designed. The GeSe/MoTe2 vdW heterostructure possesses broadband photodetection over ultraviolet, visible, and near infrared. The device has competitive responsivity (R) and detectivity (D*) over a broadband even at 1050 nm, which are 28.4 A/W and 5.6 × 109 Jones, respectively. Excitingly, the response speed for 365 nm is as fast as 3 μs, which is much faster than most other GeSe devices. Overall, our results suggest that the GeSe/MoTe2 heterostructure can provide an effective strategy to achieve broadband photodetectors with both high responsivity and fast response.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献