Influence of cough airflow characteristics on respiratory mucus clearance

Author:

Ren Shuai12ORCID,Cai Maolin2,Shi Yan2ORCID,Luo Zujin3,Wang Tao1

Affiliation:

1. School of Automation, Beijing Institute of Technology, Beijing 100081, China

2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

3. Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China

Abstract

A cough is a respiratory reflex for respiratory mucus clearance. The cough airflow dynamics can be characterized by three parameters, which are cough peak flow rate (CPFR), peak velocity time (PVT), and cough expired volume (CEV). In this study, the three-dimensional human respiratory airways from generation 0 to 5 are reconstructed from computerized tomography images. The non-Newtonian property of respiratory mucus is considered. The airflow–mucus interaction phenomenon has been analyzed in time and space based on the Eulerian wall film model. The maximum air velocity and wall shear stress could reach 38 m/s and 14 Pa, respectively, when the CPFR is 6 L/s. In addition, the influence of CPFR, PVT, and CEV on mucus clearance has been studied. The cough efficiency is used to quantify the mucus clearance. The results showed that increasing the cough peak flow rate has no noticeable effect on mucus clearance under normal and low mucus viscosity. Increasing the cough peak flow rate can effectively improve mucus clearance when the mucus viscosity becomes high. Specifically, the CEV has an apparent positive effect on clearing mucus regardless of the viscosity and thickness. This study provides a new research direction to improve mucus clearance by improving the CEV rather than the CPFR for patients with chronic obstructive pulmonary disease, neuromuscular disease, or other pulmonary diseases.

Funder

National Natural Science Foundation of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3