Coupled Eulerian Wall Film–Discrete Phase model for predicting respiratory droplet generation during a coughing event

Author:

Khoa Nguyen Dang1ORCID,Kuga KazukiORCID,Inthavong Kiao2ORCID,Ito KazuhideORCID

Affiliation:

1. Interdisciplinary Graduate School of Engineering Sciences, Kyushu University 1 , Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

2. School of Engineering, Mechanical and Automotive, RMIT University 3 , Melbourne, Australia

Abstract

Infectious respiratory diseases have long been a serious public health issue, with airborne transmission via close person-to-person contact being the main infection route. Coughing episodes are an eruptive source of virus-laden droplets that increase the infection risk of susceptible individuals. In this study, the droplet generation process during a coughing event was reproduced using the Eulerian wall film (EWF) model, and the absorption/expulsion of droplets was tracked using the discrete phase model (DPM). A realistic numerical model that included the oral cavity with teeth features and the respiratory system from the throat to the first bifurcation was developed. A coughing flow profile simulated the flow patterns of a single coughing episode. The EWF and DPM models were coupled to predict the droplet formation, generation, absorption, and exhalation processes. The results showed that a large droplet number concentration was generated at the beginning of the coughing event, with the peak concentration coinciding with the peak cough rate. Analysis of the droplet site of origin showed that large amounts of droplets were generated in the oral cavity and teeth surface, followed by the caudal region of the respiratory system. The size of the expelled droplets was 0.25–24 μm, with the peak concentration at 4–8 μm. This study significantly contributes to the realm on the site of origin and localized number concentration of droplets after a coughing episode. It can facilitate studies on infection risk assessment, droplet dispersion, and droplet generation mechanisms from other sneezing or phonation activities.

Funder

Japan Science and Technology, CREST Japan

FOREST program from JST, Japan

JSPS KAKENHI

MEXT as “Program for Promoting Researches on the Supercomputer Fugaku”

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3