Effect of Microplastic Particles on the Rheological Properties of Human Saliva and Mucus

Author:

Przekop Rafał1ORCID,Michalczuk Urszula1,Penconek Agata1,Moskal Arkadiusz1ORCID

Affiliation:

1. Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland

Abstract

Pollution by plastic microparticles is rising rapidly. One avenue of human exposure to nanoparticles is through inhalation. The main source of microplastics in indoor environments, leading to unintended inhalation, is synthetic fabric used in clothing. Other sources include curtains, carpets, furniture, wall paints, and floor finishes. Occupational exposure is particularly significant in waste management and recycling operations, during exposure to high heat, during high-energy treatment of polymer composites, and during 3D printing. In outdoor environments, exposure can happen through breathing in contaminated aerosols from ocean waves or airborne particles from dried wastewater treatments. Airborne particles affect human health in various ways, including via direct interactions with the epithelium and its mucus layer after deposition in the mouth and respiratory system. Exposure due to the ingestion of microplastics present in various environmental compartments may occur either directly or indirectly via the food chain or drinking water. This study aimed to determine the effects of plastic microparticles on the rheology of mucus and saliva, and, thus, their functioning. The experiments used artificial mucus, saliva, and plastic nanoparticles (namely, PS—polystyrene and PE—polyethylene). The rheological properties of saliva and mucus were determined via the use of an oscillatory rheometer at various temperatures (namely, 36.6 °C and 40 °C, which correspond to healthy and ill humans). The results were compared with those obtained for pure saliva and mucus. An increase in apparent viscosity was observed for saliva, which is behavior typical of for solid particle suspensions in liquids. In contrast, for mucus, the effect was the opposite. The influence of the presence of the particles on the parameters of the constitutive viscosity equations was studied. Plastic micro- and nanoparticles in the saliva and mucus may interfere with their physiological functions.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference37 articles.

1. Importance and health hazards of nanoparticles used in the food industry;Naseer;Nanotechnol. Rev.,2018

2. How important is drinking water exposure for the risks of engineered nanoparticles to consumers?;Tiede;Nanotoxicology,2016

3. The occurance nd dietary intake related to the presence of microplastics in drinking water in Saudi Arabia;Almaiman;Environ. Monit. Assess.,2021

4. Detection of microplastics in human lung tissue using μFTIR spectroscopy;Jenner;Sci. Total Enviorn.,2022

5. Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings;Turra;Sci. Total Environ.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3