Structural and electrocatalytic properties of copper clusters: A study via deep learning and first principles

Author:

Wang Xiaoning1ORCID,Wang Haidi2ORCID,Luo Qiquan3ORCID,Yang Jinlong1ORCID

Affiliation:

1. Department of Chemical Physics, and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China

2. School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China

3. Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China

Abstract

Determining the atomic structure of clusters has been a long-term challenge in theoretical calculations due to the high computational cost of density-functional theory (DFT). Deep learning potential (DP), as an alternative way, has been demonstrated to be able to conduct cluster simulations with close-to DFT accuracy but at a much lower computational cost. In this work, we update 34 structures of the 41 Cu clusters with atomic numbers ranging from 10 to 50 by combining global optimization and the DP model. The calculations show that the configuration of small Cu n clusters ( n = 10–15) tends to be oblate and it gradually transforms into a cage-like configuration as the size increases ( n > 15). Based on the updated structures, their relative stability and electronic properties are extensively studied. In addition, we select three different clusters (Cu13, Cu38, and Cu49) to study their electrocatalytic ability of CO2 reduction. The simulation indicates that the main product is CO for these three clusters, while the selectivity of hydrocarbons is inhibited. This work is expected to clarify the ground-state structures and fundamental properties of Cu n clusters, and to guide experiments for the design of Cu-based catalysts.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3