Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures

Author:

Cheng Tiantian1,Meng Yuxin1,Luo Man12,Xian Jiachi1,Luo Wenjin3,Wang Weijun2,Yue Fangyu4,Ho Johnny C.2ORCID,Yu Chenhui1,Chu Junhao4

Affiliation:

1. School of Microelectronics and School of Integrated Circuits School of Information Science and Technology Nantong University Nantong 226019 P. R. China

2. Department of Materials Science and Engineering and State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong Hong Kong SAR 999077 P. R. China

3. Department of Physics and JILA University of Colorado Boulder CO 80309 USA

4. School of Physics and Electronic Science East China Normal University Shanghai 200241 P. R. China

Abstract

AbstractThe strategic integration of low‐dimensional InAs‐based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs‐based van der Waals materials and devices promise further miniaturization of semiconductor devices in line with Moore's Law. However, progress in this area lags behind other 2D materials like graphene and boron nitride. Challenges include synthesizing pure crystalline phase InAs nanostructures and single‐atomic‐layer 2D InAs films, both vital for advanced van der Waals heterostructures. Also, diverse surface state effects on InAs‐based van der Waals devices complicate their performance evaluation. This review discusses the experimental advances in the van der Waals epitaxy of InAs‐based materials and the working principles of InAs‐based van der Waals devices. Theoretical achievements in understanding and guiding the design of InAs‐based van der Waals systems are highlighted. Focusing on advancing novel selective area growth and remote epitaxy, exploring multi‐functional applications, and incorporating deep learning into first‐principles calculations are proposed. These initiatives aim to overcome existing bottlenecks and accelerate transformative advancements in integrating InAs and van der Waals heterostructures.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3