Atomistic modeling of lithium materials from deep learning potential with ab initio accuracy

Author:

Wang Haidi1,Li Tao1,Yao Yufan2,Liu Xiaofeng1,Zhu Weiduo1,Chen Zhao1,Li Zhongjun1,Hu Wei2

Affiliation:

1. School of Physics, Hefei University of Technology a , Hefei 230091, China

2. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China b , Hefei 230026, China

Abstract

Lithium has been paid great attention in recent years thanks to its significant applications for battery and lightweight alloy. Developing a potential model with high accuracy and efficiency is important for theoretical simulation of lithium materials. Here, we build a deep learning potential (DP) for elemental lithium based on a concurrent-learning scheme and DP representation of the density-functional theory (DFT) potential energy surface (PES), the DP model enables material simulations with close-to DFT accuracy but at much lower computational cost. The simulations show that basic parameters, equation of states, elasticity, defects and surface are consistent with the first principles results. More notably, the liquid radial distribution function based on our DP model is found to match well with experiment data. Our results demonstrate that the developed DP model can be used for the simulation of lithium materials.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3