Affiliation:
1. U.S. Naval Research Laboratory, Washington, DC 20375, USA
2. Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA
3. Novel Crystal Technology, Sayama-city, Saitama, Japan
Abstract
Activation of implanted donors into a highly-resistive, nitrogen-doped homoepitaxial β-Ga2O3 has been investigated. Nitrogen acceptors with the concentration of ∼1017 cm−3 were incorporated during epitaxial growth yielding low-doped (net donor concentration <1014 cm−3) films subsequently implanted with Si, Ge, and Sn. Upon Ohmic contact formation to the implanted regions, sheet resistance values of 314, 926, and 1676 Ω/sq were measured at room temperature for the Si-, Ge-, and Sn-implanted samples, respectively. Room temperature Hall measurements resulted in sheet carrier concentrations and Hall mobilities of 2.13 × 1014 /93, 8.58 × 1013/78, and 5.87 × 1013/63 cm2/(V s), respectively, for these three donor species. Secondary ion mass spectroscopy showed a volumetric dopant concentration of approximately 2 × 1019 cm−3 for the three species, resulting in carrier activation efficiencies of 64.7%, 40.3%, and 28.2% for Si, Ge, and Sn, respectively. Temperature-dependent Hall effect measurements ranging from 15 to 300 K showed a nearly constant carrier concentration in the Si-implanted sample, suggesting the formation of an impurity band indicative of degenerate doping. With a bulk carrier concentration of 1.3 × 1019 cm−3 for the Si implanted sample, a room temperature mobility of 93 cm2/(V s) is among the highest reported in Ga2O3 with a similar carrier concentration. The unimplanted Ga2O3:N regions remained highly resistive after the surrounding areas received implant and activation anneal. These results open the pathway for fabricating Ga2O3 devices through the selective n-type doping in highly resistive epitaxial Ga2O3.
Funder
Office of Naval Research
Office of Naval Research Global
High Density Integration industry consortium
Subject
Physics and Astronomy (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献