Affiliation:
1. School of Integrated Circuits and Electronics and Yangtze Delta Region Academy Beijing Institute of Technology Beijing 100081 China
2. R&D Center for Solid‐state Lighting Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 China
3. Department of Electrical and Electronic Engineering The University of Hong Kong Pokfulam Road Hong Kong 999077 China
Abstract
Field‐effect transistors (FETs) with ultra‐wide bandgap semiconductor Ga2O3 have been fabricated by physical vapor deposition with advantages of low cost, wafer scale, and rapid production. The insulator‐like pristine Ga2O3 is converted to semiconductor by co‐sputtering Sn with post‐annealing, which demonstrates a 5.6 × 107 times higher on‐state current. Importantly, this Sn‐doped Ga2O3 sample shows a high breakdown voltage near 500 V. Furthermore, a 4 inch array of Sn‐doped Ga2O3 FETs with high‐k Ta2O5 gate dielectric has been fabricated on a silicon substrate, successfully showing a large on‐current density of 1.3 mA mm−1, a high ION/IOFF of 2.5 × 106, and a low threshold voltage of 3.9 V, which are extracted from the average 350 devices. This work paves a promising way for Ga2O3‐based nanoelectronics to serve medium‐high voltage with low cost, rapid, and wafer‐scale production.
Funder
National Natural Science Foundation of China