Bragg scattering of flexural-gravity waves by a series of polynyas in the context of blocking dynamics

Author:

Barman S. C.1ORCID,Boral S.1ORCID,Sahoo T.1ORCID

Affiliation:

1. Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Abstract

Flexural-gravity wave scattering due to an array of polynyas is investigated from the perspective of the blocking dynamics. The canonical eigenfunction expansion method is generalized to account for multiple propagating wave modes within blocking frequencies. Bragg scattering occurs due to the presence of multiple gaps in the floating ice sheet, and the number of sub-harmonic peaks in wave reflection becomes one/two less than the number of gaps as the reflection coefficient varies with a change in gap/ice-sheet length. In addition, the amplitudes of harmonic peaks in wave reflection increase with an increase in the number of gaps. The variation of wave reflection with an increase in wavenumber/length of the ice sheet depicts that common zero minima occur for an even number of gaps, while common sub-harmonic maxima occur for an odd number of gaps. The scattering coefficients vary between zero and unity within the blocking frequencies, despite the individual amplitudes of the scattered waves becoming more than unity for certain frequencies. Noticeably, higher amplitudes of the scattered waves are associated with lower energy transfer rates and vice versa. Extrema in wave reflection occur for higher values of frequency within the primary and secondary blocking points. In addition, removable discontinuities are found in the scattering coefficient at the blocking frequencies, whereas a jump discontinuity is observed for certain frequencies within the blocking limits due to the incident wave mode conversion. Moreover, irregularities in the ice sheet's deflection are observed for any frequency within the blocking limit due to the superposition of three propagating wave modes.

Funder

Council of Scientific and Industrial Research, India

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3