Flexural-gravity wave scattering by an array of bottom-standing partial porous barriers in the framework of Bragg resonance and blocking dynamics

Author:

Chanda A.ORCID,Barman S. C.ORCID,Sahoo T.ORCID,Meylan M. H.1ORCID

Affiliation:

1. School of Information and Physical Sciences, The University of Newcastle 3 , Callaghan, NSW 2308, Australia

Abstract

Flexural-gravity wave scattering by an array of vertical porous barriers of various configurations is investigated in finite water depth from the viewpoint of blocking dynamics. A scattering matrix is introduced for the velocity potentials using the canonical eigenfunction expansion method developed for a single propagating wave mode to account for the multiple propagating wave modes. Subsequently, appropriate matching conditions are applied at the interface boundaries and edges to solve the physical problem. Apart from multiple barriers of equal length, the efficiency of four different barrier configurations of unequal lengths is investigated. This study shows that out of these four barrier configurations, the convex and increasing order of the barrier arrangements are more effective as wave-dissipating systems than the concave and decreasing order of the barriers. Bragg reflection occurs in the case of two or more barriers for a specific value of porosity and suitable barrier configuration, whose amplitude decreases with an increase in the number of barriers due to the dissipation of wave energy. The presence of three propagating wave modes in the blocking paradigm leads to mode conversion within a certain range of the frequency space. Both the scattering and dissipation coefficients are influenced by the wave energy transfer rates and the amplitudes of incident, reflected, and transmitted wave modes. This investigation exhibits the presence of discontinuities in the scattering coefficients at frequencies where blocking and mode conversion occur. The frequency domain results are used to simulate the plate displacement in the time domain by applying the Fourier transform.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3