Affiliation:
1. Department of Ocean Engineering and Naval Architecture, Indian Institute of TechnologyKharagpur 721302, India
Abstract
A large class of problems in the field of fluid–structure interaction involves higher-order boundary conditions for the governing partial differential equation and the eigenfunctions associated with these problems are not orthogonal in the usual sense. In the present study, mode-coupling relations are derived by utilizing the Fourier integral theorem for the solutions of the Laplace equation with higher-order derivatives in the boundary conditions in both the cases of a semi-infinite strip and a semi-infinite domain in two dimensions. The expansion for the velocity potential is derived in terms of the corresponding eigenfunctions of the boundary-value problem. Utilizing such an expansion of the velocity potential, the symmetric wave source potentials or the so-called Green's function for the boundary-value problem of the flexural gravity wave maker is derived. Alternatively, utilizing the integral form of the wave source potential, the expansion formulae for the velocity potentials are recovered, which justifies the completeness of the eigenfunctions involved. As an application of the wave maker problem, oblique water wave scattering caused by cracks in a floating ice-sheet is analysed in the case of infinite depth.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献