Charge carrier nonadiabatic dynamics in non-metal doped graphitic carbon nitride

Author:

Agrawal Sraddha1ORCID,Vasenko Andrey S.23ORCID,Trivedi Dhara J.4ORCID,Prezhdo Oleg V.15ORCID

Affiliation:

1. Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA

2. HSE University, 101000 Moscow, Russia

3. I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia

4. Department of Physics, Clarkson University, Potsdam, New York 13699, USA

5. Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA

Abstract

Graphitic carbon nitride (GCN) has attracted significant attention due to its excellent performance in photocatalytic applications. Non-metal doping of GCN has been widely used to improve the efficiency of the material as a photocatalyst. Using a combination of time-domain density functional theory with nonadiabatic molecular dynamics, we study the charge carrier dynamics in oxygen and boron doped GCN systems. The reported simulations provide a detailed time-domain mechanistic description of the charge separation and recombination processes that are of fundamental importance while evaluating the photovoltaic and photocatalytic performance of the material. The appearance of smaller energy gaps due to the presence of dopant states improves the visible light absorption range of the doped systems. At the same time, the nonradiative lifetimes are shortened in the doped systems as compared to the pristine GCN. In the case of boron doped at a carbon (B–C–GCN), the charge recombination time is very long as compared to the other two doped systems owing to the smaller electron–phonon coupling strength between the valence band maximum and the trap state. The results suggest B–C–GCN as the most suitable candidate among three doped systems studied in this work for applications in photocatalysis. This work sheds light into the influence of dopants on quantum dynamics processes that govern GCN performance and, thus, guides toward building high-performance devices in photocatalysis.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3