Affiliation:
1. Department of Chemistry, Visva-Bharati University , Santiniketan 731235, India
Abstract
In order to develop an efficient metal-free solar energy harvester, we herein performed the electronic structure calculation, followed by the hot carrier relaxation dynamics of two dimensional (2D) aza-covalent organic framework by time domain density functional calculations in conjunction with non-adiabatic molecular dynamics (NAMD) simulation. The electronic structure calculation shows that the aza-covalent organic framework (COF) is a direct bandgap semiconductor with acute charge separation and effective optical absorption in the UV-visible region. Our study of non-adiabatic molecular dynamics simulation predicts the sufficiently prolonged electron–hole recombination process (6.8 nanoseconds) and the comparatively faster electron (22.48 ps) and hole relaxation (0.51 ps) dynamics in this two-dimensional aza-COF. According to our theoretical analysis, strong electron–phonon coupling is responsible for the rapid charge relaxation, whereas the electron–hole recombination process is slowed down by relatively weak electron–phonon coupling, relatively lower non-adiabatic coupling, and quick decoherence time. We do hope that our results of NAMD simulation on exciton relaxation dynamics will be helpful for designing photovoltaic devices based on this two dimensional aza-COF.
Funder
Human Resource Development Group
University Grants Commission
Department of Science and Technology, Ministry of Science and Technology, India
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献