Protons Block BK Channels by Competitive Inhibition with K+ and Contribute to the Limits of Unitary Currents at High Voltages

Author:

Brelidze Tinatin I.1,Magleby Karl L.1

Affiliation:

1. Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33101

Abstract

Proton block of unitary currents through BK channels was investigated with single-channel recording. Increasing intracellular proton concentration decreased unitary current amplitudes with an apparent pKa of 5.1 without discrete blocking events, indicating fast proton block. Unitary currents recorded at pHi 8.0 and 9.0 had the same amplitudes, indicating that 10−8 M H+ had little blocking effect. Increasing H+ by recording at pHi 7.0, 6.0, and 5.0 then reduced the unitary currents by 13%, 25%, and 53%, respectively, at +200 mV. Increasing K+i relieved the proton block in a manner consistent with competitive inhibition of K+i action by H+i. Proton block was voltage dependent, increasing with depolarization, indicating that block was coupled to the electric field of the membrane. Proton block was not described by the Woodhull equation for noncompetitive voltage-dependent block, but was described by an equation for cooperative competitive inhibition that included voltage-dependent block from the Woodhull equation. Proton block was still present after replacing the eight negative charges in the ring of charge at the entrance to the intracellular vestibule by uncharged amino acids. Thus, the ring of charge is not the site of proton block or of competitive inhibition of K+i action by H+i. With 150 mM symmetrical KCl, unitary current amplitudes increased with depolarization, reaching 66 pA at +350 mV (pHi 7.0). The increase in amplitude with voltage became sublinear for voltages >100 mV. The sublinearity was unaffected by removing from the intracellular solutions Ca2+ and Ba2+ ions, the Ca2+ buffers EGTA and HEDTA, the pH buffer TES, or by replacing Cl− with MeSO3−. Proton block accounted for ∼40% of the sublinearity at +200 mV and pH 7.0, indicating that factors in addition to proton block contribute to the sublinearity of the unitary currents through BK channels.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3