The Inner Quaternary Ammonium Ion Receptor in Potassium Channels of the Node of Ranvier

Author:

Armstrong Clay M.1,Hille Bertil1

Affiliation:

1. From the Department of Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620 and the Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, Washington 98195

Abstract

Quaternary ammonium ions were applied to the inside of single myelinated nerve fibers by diffusion from a cut end. The resulting block of potassium channels in the node of Ranvier was studied under voltage-clamp conditions. The results agree in almost all respects with similar studies by Armstrong of squid giant axons. With tetraethylammonium ion (TEA), pentyltriethylammonium ion (C5), or nonyltriethylammonium ion (C9) inside the node, potassium current during a depolarization begins to rise at the normal rate, reaches a peak, and then falls again. This unusual inactivation is more complete with C9 than with TEA. Larger depolarizations give more block. Thus the block of potassium channels grows with time and voltage during a depolarization. The block reverses with repolarization, but for C9 full reversal takes seconds at -75 mv. The reversal is faster in 120 mM KCl Ringer's and slower during a hyperpolarization to -125 mv. All of these effects contrast with the time and voltage-independent block of potassium, channels seen with external quaternary ammonium ions on the node of Ranvier. External TEA, C5, and C9 block without inactivation. The external quaternary ammonium ion receptor appears to be distinct from the inner one. Apparently the inner quaternary ammonium ion receptor can be reached only when the activation gate for potassium channels is open. We suggest that the inner receptor lies within the channel and that the channel is a pore with its activation gate near the axoplasmic end.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 289 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probing the Proton-Gated ASIC Channels Using Tetraalkylammonium Ions;Biomolecules;2023-11-08

2. Calcium-gated potassium channel blockade via membrane-facing fenestrations;Nature Chemical Biology;2023-08-31

3. Inactivation of potassium channels by ceramide in rat pancreatic β-cells;Archives of Biochemistry and Biophysics;2023-02

4. Action Potential;Humans and Electricity;2023

5. Interrogating the gating motions of the NaK channel;Journal of General Physiology;2022-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3