HIFs: New arginine mimic inhibitors of the Hv1 channel with improved VSD–ligand interactions

Author:

Zhao Chang12ORCID,Hong Liang1,Galpin Jason D.3ORCID,Riahi Saleh4,Lim Victoria T.4,Webster Parker D.1ORCID,Tobias Douglas J.24,Ahern Christopher A.3ORCID,Tombola Francesco12ORCID

Affiliation:

1. Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA

2. Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA

3. Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA

4. Department of Chemistry, University of California, Irvine, Irvine, CA

Abstract

The human voltage-gated proton channel Hv1 is a drug target for cancer, ischemic stroke, and neuroinflammation. It resides on the plasma membrane and endocytic compartments of a variety of cell types, where it mediates outward proton movement and regulates the activity of NOX enzymes. Its voltage-sensing domain (VSD) contains a gated and proton-selective conduction pathway, which can be blocked by aromatic guanidine derivatives such as 2-guanidinobenzimidazole (2GBI). Mutation of Hv1 residue F150 to alanine (F150A) was previously found to increase 2GBI apparent binding affinity more than two orders of magnitude. Here, we explore the contribution of aromatic interactions between the inhibitor and the channel in the presence and absence of the F150A mutation, using a combination of electrophysiological recordings, classic mutagenesis, and site-specific incorporation of fluorinated phenylalanines via nonsense suppression methodology. Our data suggest that the increase in apparent binding affinity is due to a rearrangement of the binding site allowed by the smaller residue at position 150. We used this information to design new arginine mimics with improved affinity for the nonrearranged binding site of the wild-type channel. The new compounds, named “Hv1 Inhibitor Flexibles” (HIFs), consist of two “prongs,” an aminoimidazole ring, and an aromatic group connected by extended flexible linkers. Some HIF compounds display inhibitory properties that are superior to those of 2GBI, thus providing a promising scaffold for further development of high-affinity Hv1 inhibitors.

Funder

National Institute of General Medical Sciences

National Institute of Neurological Disorders and Stroke

Facility for Atomic Mutagenesis

Chao Family Comprehensive Cancer Center

National Cancer Institute

National Science Foundation

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3