Trapping Charge Mechanism in Hv1 Channels (CiHv1)

Author:

Fernández Miguel12,Alvear-Arias Juan J.12,Carmona Emerson M.3ORCID,Carrillo Christian12,Pena-Pichicoi Antonio12,Hernandez-Ochoa Erick O.4ORCID,Neely Alan12ORCID,Alvarez Osvaldo1ORCID,Latorre Ramon1ORCID,Garate Jose A.5,Gonzalez Carlos24

Affiliation:

1. Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, Chile

2. Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso 2351319, Chile

3. Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA

4. Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA

5. Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastian, Santiago 7780272, Chile

Abstract

The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.

Funder

National Agency for Research and Development

Fondecy

Millennium Science Initiative Program ICM-ANID

Centro Ciencia y Vida, Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia de ANID

Comision Nacional de Investigacion Cientıfica y Tecnologica

Programa Formacion de Capital Humano Avanzado

Doctorado Nacional

National Institutes of Health

National Institutes of Health Award

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference43 articles.

1. Hv1 Proton Channels in Dinoflagellates: Not Just for Bioluminescence?;Kigundu;J. Eukaryot. Microbiol.,2018

2. HVCN1 Modulates BCR Signal Strength via Regulation of BCR-Dependent Generation of Reactive Oxygen Species;Capasso;Nat. Immunol.,2010

3. Voltage-Gated Proton Channels and Other Proton Transfer Pathways;Decoursey;Physiol. Rev.,2003

4. Superoxide Generation by the Electrogenic NADPH Oxidase of Human Neutrophils Is Limited by the Movement of a Compensating Charge;Henderson;Biochem. J.,1988

5. Hv1 Proton Channels Are Required for High-Level NADPH Oxidase-Dependent Superoxide Production during the Phagocyte Respiratory Burst;Ramsey;Proc. Natl. Acad. Sci. USA,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3