State-dependent modulation of CFTR gating by pyrophosphate

Author:

Tsai Ming-Feng11,Shimizu Hiroyasu12,Sohma Yoshiro123,Li Min1,Hwang Tzyh-Chang11

Affiliation:

1. Department of Medical Pharmacology and Physiology, and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Missouri 65211

2. Department of Hygiene and Public Health and Department of Physiology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan

3. Department of Pharmacology and Neuroscience, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) is an adenosine triphosphate (ATP)-gated chloride channel. ATP-induced dimerization of CFTR's two nucleotide-binding domains (NBDs) has been shown to reflect the channel open state, whereas hydrolysis of ATP is associated with channel closure. Pyrophosphate (PPi), like nonhydrolytic ATP analogues, is known to lock open the CFTR channel for tens of seconds when applied with ATP. Here, we demonstrate that PPi by itself opens the CFTR channel in a Mg2+-dependent manner long after ATP is removed from the cytoplasmic side of excised membrane patches. However, the short-lived open state (τ ∼1.5 s) induced by MgPPi suggests that MgPPi alone does not support a stable NBD dimer configuration. Surprisingly, MgPPi elicits long-lasting opening events (τ ∼30 s) when administrated shortly after the closure of ATP-opened channels. These results indicate the presence of two different closed states (C1 and C2) upon channel closure and a state-dependent effect of MgPPi on CFTR gating. The relative amount of channels entering MgPPi-induced long-open bursts during the ATP washout phase decreases over time, indicating a time-dependent dissipation of the closed state (C2) that can be locked open by MgPPi. The stability of the C2 state is enhanced when the channel is initially opened by N6-phenylethyl-ATP, a high affinity ATP analogue, but attenuated by W401G mutation, which likely weakens ATP binding to NBD1, suggesting that an ATP molecule remains bound to the NBD1 site in the C2 state. Taking advantage of the slow opening rate of Y1219G-CFTR, we are able to identify a C2-equivalent state (C2*), which exists before the channel in the C1 state is opened by ATP. This closed state responds to MgPPi much more inefficiently than the C2 state. Finally, we show that MgAMP-PNP exerts its effects on CFTR gating via a similar mechanism as MgPPi. The structural and functional significance of our findings is discussed.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3