Mg2+-dependent ATP occlusion at the first nucleotide-binding domain (NBD1) of CFTR does not require the second (NBD2)

Author:

Aleksandrov Luba1,Aleksandrov Andrei1,Riordan John R.1

Affiliation:

1. Department of Biochemistry/Biophysics and Cystic Fibrosis Center, University of North Carolina, Manning Drive CB 7248, Chapel Hill, NC 27599, U.S.A.

Abstract

ATP binding to the first and second NBDs (nucleotide-binding domains) of CFTR (cystic fibrosis transmembrane conductance regulator) are bivalent-cation-independent and -dependent steps respectively [Aleksandrov, Aleksandrov, Chang and Riordan (2002) J. Biol. Chem. 277, 15419–15425]. Subsequent to the initial binding, Mg2+ drives rapid hydrolysis at the second site, while promoting non-exchangeable trapping of the nucleotide at the first site. This occlusion at the first site of functional wild-type CFTR is somewhat similar to that which occurs when the catalytic glutamate residues in both of the hydrolytic sites of P-glycoprotein are mutated, which has been proposed to be the result of dimerization of the two NBDs and represents a transient intermediate formed during ATP hydrolysis [Tombline and Senior (2005) J. Bioenerg. Biomembr. 37, 497–500]. To test the possible relevance of this interpretation to CFTR, we have now characterized the process by which NBD1 occludes [32P]N3ATP (8-azido-ATP) and [32P]N3ADP (8-azido-ADP). Only N3ATP, but not N3ADP, can be bound initially at NBD1 in the absence of Mg2+. Despite the lack of a requirement for Mg2+ for ATP binding, retention of the NTP at 37 °C was dependent on the cation. However, at reduced temperature (4 °C), N3ATP remains locked in the binding pocket with virtually no reduction over a 1 h period, even in the absence of Mg2+. Occlusion occurred identically in a ΔNBD2 construct, but not in purified recombinant NBD1, indicating that the process is dependent on the influence of regions of CFTR in addition to NBD1, but not NBD2.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3