Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling

Author:

Cely-Ortiz Alejandra1ORCID,Felice Juan I.1ORCID,Díaz-Zegarra Leandro A.1ORCID,Valverde Carlos A.1,Federico Marilén1,Palomeque Julieta1,Wehrens Xander H.T.2ORCID,Kranias Evangelia G.3ORCID,Aiello Ernesto A.1ORCID,Lascano Elena C.4,Negroni Jorge A.4,Mattiazzi Alicia1ORCID

Affiliation:

1. Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico–La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina

2. Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), Neuroscience, Pediatrics, Center for Space Medicine, Baylor College of Medicine, Cardiovascular Research Institute, Houston, TX

3. Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, OH

4. Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina

Abstract

Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.

Funder

National Research Council

Fondation Leducq

National Institutes of Health

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3