The Calcium Transient Coupled to the L-Type Calcium Current Attenuates Action Potential Alternans

Author:

Warren Mark,Poelzing Steven

Abstract

AbstractBackgroundAction potential (AP) alternans are linked to increased arrhythmogenesis. It is suggested that calcium (Ca2+) transient (CaT) alternans cause AP alternans through bi-directional coupling feedback mechanisms because CaT alternans can precede AP alternans and develop in AP alternans free conditions. However, the CaT is an emergent response to intracellular Ca2+handling, and the mechanisms linking AP and CaT alternans are still a topic of investigation. This study investigated the development of AP alternans in the absence of CaT.MethodsAP (patch clamp) and intracellular Ca2+(Fluo-4 epifluorescence) were recorded simultaneously from isolated rabbit ventricle myocytes perfused with the intracellular Ca2+buffer BAPTA (10-20 mM) to abolish CaT and/or the L-type Ca2+ channel activator Bay K 8644 (25 nM).ResultsAfter a rate change, alternans were critically damped and stable, overdamped and ceased over seconds, underdamped with longer scale harmonics, or unstably underdamped progressing to 2:1 capture. Alternans in control cells were predominantly critically damped, but after CaT ablation with 10 or 20 mM BAPTA, exhibited respectively increased overdamping or increased underdamping. Alternans were easier to induce in CaT free cells as evidenced by a higher alternans threshold (ALT-TH: at least 7 pairs of alternating beats) relative to control cells. Alternans in Bay K 8644 treated cells were often underdamped, but the ALT-TH was similar to control. In CaT ablated cells, Bay K 8644 prolonged AP duration (APD) leading predominantly to unstably underdamped alternans.ConclusionsAP alternans occur more readily in the absence of CaT suggesting that the CaT dampens the development of AP alternans. The data further demonstrate that agonizing the L-type calcium current without the negative feedback of the CaT leads to unstable alternans. This negative feedback mechanism may be important for understanding treatments aimed at reducing CaT or its dynamic response to prevent arrhythmias.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3