Affiliation:
1. 1Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany
2. 2Institute for Physiological Chemistry, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany
Abstract
The tetramethylene-bridged molecular tweezers bearing lithium methanephosphonate or dilithium phosphate substituents in the central benzene or naphthalene spacer-unit and the dimethylene-bridged clips containing naphthalene or anthracene sidewalls substituted by lithium methanephosphonate, dilithium phosphate, or sodium sulfate groups in the central benzene spacer-unit are water-soluble. The molecular clips having planar naphthalene sidewalls bind flat aromatic guest molecules preferentially, for example, the nicotinamide ring and/or the adenine-unit in the nucleotides NAD(P)+, NMN, or AMP, whereas the benzene-spaced molecular tweezers with their bent sidewalls form stable host–guest complexes with the aliphatic side chains of basic amino acids such as lysine and argenine. The phosphonate-substituted tweezer and the clips having an extended central naphthalene spacer-unit or extended anthracene and benzo[k]fluoranthene sidewalls, respectively, form highly stable self-assembled dimers in aqueous solution, evidently due to non-classical hydrophobic interactions. The phosphate-substituted molecular clip containing naphthalene sidewalls inhibits the enzymatic, ADH-catalyzed ethanol oxidation by binding the cofactor NAD+ in a competitive reaction. Surprisingly, tweezer-bearing phosphate substituents in the central benzene spacer-unit are more efficient inhibitors for the ethanol oxidation than the correspondingly substituted naphthalene clip, even though the tweezer does not bind the cofactor NAD+ within the limits of detection. The phosphate-substituted naphthalene clip is, however, a highly efficient inhibitor of the enzymatic oxidation of glucose-6-phosphate (G6P) with NADP+ catalyzed by glucose-6-phosphate dehydrogenase (G6PD), whereas the phosphonate-substituted clip only functions as an inhibitor by forming a complex with the cofactor. Detailed kinetic, thermodynamic, and computational modeling studies provide insight into the mechanism of these novel enzyme inhibition reactions.
Subject
General Chemical Engineering,General Chemistry
Reference20 articles.
1. anie;Meyer;Review Chem,1210
2. jo;Schrader;Org Chem,2005
3. Synthesis of molecular tweezers and clips by the use of a molecular Lego set and their supramolecular functions inStrategies and Tactics in Organic Synthesis Chap pp Academic Elsevier Amsterdam;Klärner;Vol,2008
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献