Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks

Author:

Yang Xiao-Yu1,Li Yu1,Lemaire Arnaud1,Yu Jia-Guo2,Su Bao-Lian1

Affiliation:

1. 1Laboratory of Inorganic Materials Chemistry (CMI), University of Namur (FUNDP), 61, rue de Bruxelles, B-5000 Namur, Belgium

2. 2State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China

Abstract

Hierarchically porous materials displaying multimodal pore sizes are desirable for their improved flow performance coupled with high surface areas. In the last five years, a tremendous amount of research has focused upon the synthesis and applications of hierarchically porous materials. This review aims to open up a new avenue of research in this exciting field. At first, recent progress in the synthesis of hierarchically porous materials, targeted through templating methods, is reviewed. These synthesis methods involve a supermolecular assembly of amphiphilic polymers or surfactants combined with second surfactant systems or with macrotemplates such as solid particles, liquid drops, and air bubbles. The preparation procedures using surfactants combined with other chemical or physical methods, controlled phase-separation, or template replication will also be discussed. Subsequently, an innovative procedure concerning the self-formation of hierarchically porous materials is thoroughly examined. This self-formation procedure is based on a self-generated porogen mechanism. Porogens such as alcohol molecules can be precisely controlled at the molecular level to design new hierarchically porous materials. Most of these synthesis methods allow an easy and independent adjustment to the multiporosity of a material, i.e., its micro-, meso-, and macroporosity.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference194 articles.

1. adma Ihm;Oh;Adv Mater,2005

2. lt AID gt CO;ADMA;Adv Mater,1521

3. jp;Yu;Phys Chem,2008

4. cr;Soler;Chem Rev,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3