Radical-surface interactions during film deposition: A sticky situation?

Author:

Liu Dongping1,Martin Ina T.1,Zhou Jie1,Fisher Ellen R.1

Affiliation:

1. 1Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA

Abstract

Our imaging of radicals interacting with surfaces (IRIS) method was used to investigate radical-surface reactions during low-temperature plasma-enhanced chemical vapor deposition (PECVD) processes. Special emphasis was placed on the analysis of surface reactivities for CH, SiH, CN, NH, NH2, CF2, and SiCl2 radicals during film growth. The effects of plasma parameters, such as radio frequency (rf) power and gas composition, substrate temperature, and substrate bias on radical-surface reactivity were analyzed. Different radicals exhibit different behavior at the surface of a depositing film. Specifically, CH, SiH, and CN are "sticky", with high surface reactivities. In contrast, other species such as NH, CF2, and SiCl2 do not stick to the surface of growing films and, in some cases are actually generated at the surface of the depositing film. Different plasma systems and parameters can have an effect on the stickiness of some of these species. Our IRIS measurements indicate a molecule's surface sticking probability may also be related to the molecule's electronic configuration and stability, with the most reactive species being molecules with a doublet electron configuration. In contrast, the singlet species examined here tend to be generated at the surface during film deposition. Our results also indicate that when a molecule scatters with greater than 100 % probability, it is likely to be strongly affected by energetic ion bombardment of the film surface.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3