The effect of feeding structured triacylglycerols enriched in eicosapentaenoic or docosahexaenoic acids on murine splenocyte fatty acid composition and leucocyte phagocytosis

Author:

Kew Samantha,Gibbons Edward S.,Thies Frank,McNeill Gerald P.,Quinlan Paul T.,Calder Philip C.

Abstract

The effects of altering the type of n-3 polyunsaturated fatty acid (PUFA) in the mouse diet on the ability of monocytes and neutrophils to perform phagocytosis were investigated. Male weanling mice were fed for 7 d on one of nine diets which contained 178 g lipid/kg and which differed in the type of n-3 PUFA and in the position of these in dietary triacylglycerol (TAG). The control diet contained 4·4 g α-linolenic acid/100 g total fatty acids. In the other diets, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) replaced a proportion (50 or 100 %) of the α-linolenic acid, and were in the sn-2 or the sn-1(3) position of dietary TAG. There were significant increases in the content of n-3 PUFA in spleen-cell phospholipids when EPA or DHA was fed. These increases were largely independent of the position of EPA or DHA in dietary TAG except when EPA was fed at the highest level, when the incorporation was greater when it was fed in the sn-2 than in the sn-1(3) position. There was no significant effect of dietary DHA on monocyte or neutrophil phagocytic activity. Dietary EPA dose-dependently decreased the number of monocytes and neutrophils performing phagocytosis. However, when EPA was fed in the sn-2 position, the ability of active monocytes or neutrophils to engulf bacteria was increased in a dose-dependent fashion. This did not occur when EPA was fed in the sn-1(3) position. Thus, there appears to be an influence of the position of EPA, but not of DHA, in dietary TAG on its incorporation into cell phospholipids and on the activity of phagocytic cells.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3