An adaptive metabolic demand model for protein and amino acid requirements

Author:

Millward D. J.

Abstract

The shortcomings of the metabolic implications of the current protein requirements model are reviewed, and an alternative model, validated with [1-13C]leucine balance results in human adults, is presented and evaluated in the context of defining protein requirements. The model identifies metabolic demands for amino acids as comprising a small fixed component and a variable adaptive component that is relatively insensitive to acute food or protein intake, but which changes slowly with a sustained change in intake, enabling N equilibrium to be achieved. The model accounts for the apparent low efficiency of utilisation of animal proteins in N balance studies and enables more realistic efficiency values to be measured within an experimental framework that takes account of the adaptive metabolic demand. However, the complex relationship between the adaptive metabolic demand and habitual level and quality of protein intake prevents prediction of protein quality by amino acid scoring, which can markedly underestimate actual values. In contrast to the current model, for fully adapted individuals risk of deficiency (i.e. negative N balance after complete adaptation) will only start to increase when intakes fall below the range of the true minimum requirements, i.e. a value that is currently unknown, but likely to be between 0·40 and 0·50 g/kg per d at the lower end of the reported distribution of requirements. At intakes greater than this with additional metabolic demands varying directly with intake, deficiency is only likely as a short-term response to a change to a lower intake within the adaptive range. Thus, for adults satisfying energy needs on most mixed human diets, intakes will be within the adaptive range, and N equilibrium ceases to be a useful indicator of nutritional adequacy of protein. In the context of prescriptive dietary guidelines it may be expedient to retain current values until the benefits (and any risks) of protein intakes within the adaptive range can be quantified. However, from a diagnostic perspective, indicators other than N balance need to be identified, since maintenance of N balance can no longer be used as a surrogate of adequate protein-related health.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3