Evaluation of UVC Radiation and a UVC-Ozone Combination as Fresh Beef Interventions against Shiga Toxin–Producing Escherichia coli, Salmonella, and Listeria monocytogenes and Their Effects on Beef Quality

Author:

KALCHAYANAND NORASAK12,BOSILEVAC JOSEPH M.1,KING DAVID A.1,WHEELER TOMMY L.1

Affiliation:

1. U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166, USA

2. (ORCID: https://orcid.org/0000-0001-8060-4645 [N.K.])

Abstract

ABSTRACT This research study was conducted to evaluate treatments with UVC light and a combination of UVC and ozone that have recently received attention from the beef processing industry as antimicrobial interventions that leave no chemical residues on products. The effectiveness of UVC and UVC plus gaseous ozone treatments was evaluated for inactivation of pathogenic bacteria on fresh beef and for any impact on fresh beef quality. Fresh beef tissues were inoculated with cocktails of Shiga toxin–producing Escherichia coli (STEC) strains (serotypes O26, O45, O103, O111, O121, O145, and O157:H7), Salmonella, and Listeria monocytogenes. Inoculated fresh beef tissues were subjected to UVC or UVC-ozone treatments at 106 to 590 mJ/cm2. UVC treatment alone or in combination with ozone reduced populations of STEC, Salmonella, L. monocytogenes, and aerobic bacteria from 0.86 to 1.49, 0.76 to 1.33, 0.5 to 1.14, and 0.64 to 1.23 log CFU, respectively. Gaseous ozone alone reduced populations of E. coli O157:H7, Salmonella, and L. monocytogenes by 0.65, 0.70, and 0.33 log CFU, respectively. Decimal reduction times (D-values) for STEC serotypes, Salmonella, and L. monocytogenes on surfaces of fresh beef indicated that the UVC-ozone treatment was more effective (P ≤ 0.05) than UVC light alone for reducing pathogens on the surface of fresh beef. Exposure to UVC or UVC plus gaseous ozone did not have a deleterious effect on fresh meat color and did not accelerate the formation of oxidative rancidity. These findings suggest that UVC and UVC in combination with gaseous ozone can be useful for enhancing the microbial safety of fresh beef without impairing fresh beef quality. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3