Effect of Scalding Temperature on Growth of Staphylococcus aureus and Formation of Staphylococcal Enterotoxin during the Production of Alpine Cheese in a Laboratory Cheesemaking Model

Author:

SCHWENDIMANN LIVIA12,BERGER THOMAS1,GRABER HANS-ULRICH1,MEIER SUSANN1,HUMMERJOHANN JÖRG1,JAKOB ERNST1

Affiliation:

1. National Reference Laboratory for Coagulase Positive Staphylococci, Agroscope, Schwarzenburgstrasse 161, 3003 Berne, Switzerland

2. (ORCID: https://orcid.org/0000-0001-6548-3988 [L.S.])

Abstract

ABSTRACT To reduce the number of cheese with potential Staphylococcus aureus contamination reaching consumers, European legislation has stipulated that all cheese must be tested for coagulase-positive staphylococci (CPS) at the point in production when numbers are expected to be highest. When CPS counts exceed 105 CFU/mL, staphylococcal enterotoxin (SE) tests must be conducted. When SE tests are positive, the cheese must be destroyed. Manufacturers of Swiss Alpine cheese are exempt from this legislation because SE formation in hard cheese is expected to be very unlikely because of the high scalding temperatures used for cheeses during production, which inactive CPS in the curd. However, this assumption has not been scientifically tested. A laboratory-scale cheese production experiment was performed in which the conditions corresponded to certain limitations in practical cheesemaking conditions such as temperature and time exposure as for production of Gruyere or Tete de Moine Swiss type cheeses. Raw milk aliquots (200 mL) were inoculated with five strains of CPS, and scalding temperatures of 46 to 56°C were used during cheese production. The temperatures applied after the curd was pressed were meant to reproduce the temperature curve in the peripheral zone of a real cheese wheel. Contrary to expectations, SE formation occurred and differed according to the scalding temperature (52 to 56°C). The differences in SE formation were more associated with strain type rather than temperature. These results indicate that the mechanisms of SE formation in cheese require further study. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3