Inoculation of Beef with Low Concentrations of Escherichia coli O157:H7 and Examination of Factors That Interfere with Its Detection by Culture Isolation and Rapid Methods†

Author:

BOSILEVAC JOSEPH M.1,KALCHAYANAND NORASAK1,SCHMIDT JOHN W.1,SHACKELFORD STEVEN D.1,WHEELER TOMMY L.1,KOOHMARAIE MOHAMMAD2

Affiliation:

1. 1U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166

2. 2IEH Laboratories & Consulting Group, 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, USA

Abstract

Currently used industry testing programs require the ability to detect Escherichia coli O157:H7 in samples of beef trim or ground beef at levels as low as 1 CFU/375 g. We present a reliable protocol for generating a control inoculum for verification testing at this low concentration and evaluate its use. Results show that half of all samples received no cells when 1 CFU was the target concentration and that targets greater than 3 CFU were much more reliable. Detection by culture isolation and two commercial assays, Qualicon BAX-MP and BioControl GDS, detected 94% ± 11%, 92% ± 10%, and 92% ± 7% of samples inoculated with 5.4 CFU (range 1 to 9 CFU), respectively. We also examined the effect of background aerobic plate count (APC) bacteria and fat content effects on the detection of E. coli O157:H7. At APC concentrations below 6 log CFU/g, the rapid methods detected all beef trim samples inoculated with 26 CFU of E. coli O157:H7 per 65 g. At an APC of 6.7 log CFU/g, culture, BAX-MP, and GDS detected 100, 75, and 13%, respectively, of inoculated samples. Neither commercial method detected E. coli O157:H7 in the samples when APC was 7.7 log CFU/g, whereas culture was able to detect 63% of E. coli O157:H7 in the samples when APC was at this concentration. Increased fat content correlated with decreasing recovery of immunomagnetic separation beads, but this was not observed to interfere with detection of E. coli O157:H7.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3