Attachment of Escherichia coli O157:H7 in Ground Beef to Meat Grinders and Survival after Sanitation with Chlorine and Peroxyacetic Acid

Author:

FARRELL BRIDGET L.,RONNER AMY B.1,LEE WONG AMY C.1

Affiliation:

1. Food Research Institute, Department of Food Microbiology and Toxicology, University of Wisconsin–Madison, 1925 Willow Drive, Madison, Wisconsin 53706, USA

Abstract

The potential for transfer of Escherichia coli O157:H7 from contaminated ground beef to grinding equipment and the inactivation of attached cells during cleaning and sanitizing was examined. Chub-packed ground beef with lean:fat ratios of 75:25, 80:20, or 90:10 was inoculated with 6 log CFU/g or 2 log CFU/g E. coli O157:H7 strain FRIK 910. Samples were consecutively ground in a Hobart meat grinder with stainless Steel (SS) chips (1 cm2) glued to the auger housing. Chips were harvested after grinding, detergent washing with or without manual scrubbing and rinsing, sanitizing in a chlorine or peroxyacetic acid sanitizer, and overnight storage. Survival of E. coli O157:H7 was evaluated both by plate count and enrichment in trypticase soy broth. Approximately 3 to 4 log CFU/cm2 were attached to the SS after grinding with all three fat contents. After washing and sanitizing in a chlorine or peroxyacetic acid sanitizer, viable bacteria were infrequently recovered by plate count. Enrichment of chips resulted in a higher survival rate with both sanitizing treatments, indicating that cell numbers below the limit of detection (5 CFU/cm2) or potentially injured organisms remained on the surface. Manual scrubbing during the washing step reduced the recovery rate. The scrubbing step also increased the number of passing scores assigned using an ATP bioluminescence assay of total residual soil on the chips sanitized in chlorine. The overall results indicate that plate counts alone may not be a reliable indicator of sanitation efficacy and may be validated by enrichment assay.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3