Inactivation of Cryptosporidium parvum Oocysts in Cider by Flash Pasteurization

Author:

DENG MING QI1,CLIVER DEAN O.1

Affiliation:

1. Department of Population Health and Reproduction and World Health Organization Collaborating Center for Food Virology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, California 95616-8743, USA

Abstract

Cryptosporidium parvum is a well-recognized pathogen of significant medical importance, and cider (apple juice) has been associated with foodborne cryptosporidiosis. This study investigated the effect of flash pasteurization on the viability of contaminant C. parvum oocysts. Cider inoculated with oocysts was heated at 70 or 71.7°C for 5, 10, or 20 s, and oocyst viability was measured by a semiquantitative in vitro infectivity assay. By infecting multiple wells of confluent Madin-Darby bovine kidney cells with serial dilutions of heat-treated oocysts and examining infected cells by indirect fluorescent antibody staining, the most probable number technique was applied to quantify log reduction of oocyst viability. Heating for 10 or 20 s at either temperature caused oocyst killing of at least 4.9 log (or 99.999%), whereas oocyst inactivation after pasteurization for 5 s at 70 and 71.7°C was 3.0 log (99.9%) and 4.8 log (99.998%), respectively. Our results suggested that current practices of flash pasteurization in the juice industry are sufficient in inactivating contaminant oocysts.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3